(a	88	₃ -CH ₂ -CH ₂ -CH ₂ -OH to159°C	[/	1 1
(b)	(sar sam con	two from: me) general (molecular) formula ne functional group secutive members differ by –CH ₂ nmon methods of preparation		
(c)	2bp	rect structure and 4bp around carbon and 2nbp around oxygen on hydrogens	[' [' ['	
(d)	(i)	correct structural formula for propanoic acid allow: OH but all other bonds to be shown	[′	1
	(ii)	air / oxygen bacteria / microbes / micro-organisms accept: mother of vinegar not: yeast	[/	1 1
(e)		pyl ethanoate pw: CH ₃ COOC ₃ H ₇ not: C ₅ H ₁₀ O ₂	[í [í	

1

2 ((a	(i)	ethanol CH ₃ -CH ₂ -OH	[1] [1]
			propanoic acid CH_3 - CH_2 - $COOH$ independent marking, no ecf accept C_2H_5 not – HO	[1] [1]
		(ii)	type of compound – salt / sodium carboxylate / alkanoate not soap / sodium stearate etc use – soap / cleaning / detergent	[1] [1]
		(iii)	terylene / PET / Dacron / diolen / mylar / crimplene	[1]
	(b)	(i)	polyamide / amide / peptide / polypeptide	[1]
		(ii)	correct amide linkage <u>NHCO then CONH</u> cond to mark 1, 2 monomers (different shading in box) cond continuation (to ONE correct linkage)	[1] [1] [1]
			OR nylon 6 only one linkage – NHCO cond only one monomer cond continuation (to correct linkage)	[1] [1] [1]
		(iii)	use locating agent measure distance travelled by sample / travelled by solvent front ${\bf cond}$ this is ${\bf R}_{\rm f}$ = 0.5 for mark 3, either mark 1 or mark 2 must be awarded	[1] [1] [1]
			accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]	

(a same general formula 3 same chemical properties same functional group physical properties vary in predictable way common methods of preparation consecutive members differ by CH₂ any two [2] mark first two ignore others unless it contradicts a point which has been awarded a mark (b) 2HCOOH + CaCO₃ → Ca(HCOO)₂ + CO₂ + H₂O[2 not balanced = [1] (ii) zinc + methanoic acid → zinc methanoate + hydrogen [2] [1] for each prod (iii) protected by oxide layer [1] (c) butanoic acid [1] CH_3 - CH_2 - $COOH / C_4H_8O_2 / C_3H_7COOH / C_4H_7OOH$ C_2H_4O [1]

mark ecf to molecular formula

(a	con san san phy con	me general formula insecutive members differ by CH ₂ ine chemical properties ine functional group issical properties vary in predictable way / give trend – mp increases with n etc. inmon methods of preparation is THREE	[3]
(b)		they have the same molecular formula not general formula different structures / structural formulae	[1] [1]
	(ii)	CH ₃ -CH ₂ -CH(OH)-CH ₃ / (CH ₃) ₃ C-OH not ether-type structures NOTE butan-2-ol and 2-methylpropan-2-ol acceptable	[1]
(c)		air/oxygen / (acidified) potassium chromate(VI) / (acidified) potassium manganate(VII) must have oxidation states	[1]
	(ii)	carboxylic acid / alkanoic acid CH_3 - CH_2 - $COOH$ / C_3H_7COOH / $C_4H_8O_2$ accept C_4H_7OOH	[1] [1]
(d)		measure volume of carbon dioxide time accept day / hour for time mark	[1] [1]
	(ii)	increase in temperature / more yeast present / yeast multiplies	[1]
((iii)	glucose used up accept sugar not reagent / reactant	[1]
		concentration of ethanol high enough to kill/poison yeast / denature enzymes not kill enzymes	[1]
((iv)	to prevent aerobic respiration / ethanol would be oxidised / ethanolc acid/ acid formed / lactic acid formed / dioxide and water formed	[1] ′ carbon
		т	otal: 15]

5	(a	(i)	Mg + 2CH ₃ COOH → (CH ₃ COO) ₂ Mg + H ₂ correct formula of magnesium ethanoate ignore charges	[1] [1]
			sodium ethanoate + water	[1]
	((ii)	ethyl ethanoate displayed formula	[1] [1]
	(b)		add up to 5.8 g	[1]
		(ii)	moles of C atoms = $2.4/12 = 0.2$ moles of H atoms = $0.2/1 = 0.2$	
			moles of O atoms = 3.2/16 = 0.2 all three correct = 2	[2]
			two correct = 1 empirical formula CHO	[1]
	(iii)	$116/29 = 4$ $C_4H_4O_4$ correct formula with no working scores both marks.	[1] [1]
		(iv)	HOOCCH=CHCOOH / CH ₂ =C(COOH) ₂	[2]
				[Total: 13]